for obvious reasons. Chloro coordination in 1 results from a compelling steric disposition of the chloro group. Thus a solution of the unsubstituted chelate (i.e., H in place of Cl in $\mathbf{1}$) in chlorobenzene shows no evidence for population of the triplet state brought about by intermolecular chloro coordination.

The bromo compound corresponding to $\mathbf{1}$ behaves in the same way except that the equilibrium concentration of the octahedral species is more in this case. A complete spectral and magnetic (including pmr ${ }^{12}$) characterization of the thermodynamics of such equilibria as shown by 1 and related chelates is in progress.

Acknowledgment. The grant of a Junior Research Fellowship to P. S. Z. by the Council of Scientific and Industrial Research, India, is gratefully acknowledged.

[^0]P. S. Zacharias, B. Behera, A. Chakravorty ${ }^{18}$

Department of Chemistry
Indian Institute of Technology, Kanpur, India
Received October 3, 1968

Bis(cyclooctatetraenyl)uranium (Uranocene).
 A New Class of Sandwich Complexes That Utilize Atomic \mathbf{f} Orbitals

Sir:
In a study of potential examples of hitherto unexplored ${ }^{1}$ sandwich-type complexes between tenelectron π systems and suitable rare earth f orbitals, we have found an apparent example from the reaction of U^{4+} with cyclooctatetraene dianion. To the intense yellow solution prepared by allowing cyclooctatetraene (COT) to react with potassium in dry oxygen-free tetrahydrofuran (THF) at -30° is added a solution of uranium tetrachloride in THF at 0°. After stirring overnight, degassed water is added and the green crystals are filtered, extracted with benzene or toluene using an extraction thimble, and filtered again after cooling. ${ }^{2}$ The minute green plates enflame on exposure to air but are stable to water, acetic acid, and aqueous sodium hydroxide. The compound is sparingly soluble in organic solvents and has a visible absorption spectrum with a cascade of bands at 616 (strong), 643, 661, and 671 (weak) $\mathrm{m} \mu$. It is thermally stable and sublimes at $180^{\circ}(0.03 \mathrm{~mm})$.

The structural assignment as bis(cyclooctatetraenyl)uranium or "uranocene" comes primarily from the mass spectrum which has high intensity peaks at m/e 446 (molecular ion, $\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)_{2} \mathrm{U}^{+} \equiv \mathrm{M}$), $342(\mathrm{M}-\mathrm{COT}$), and 104 (COT) and a series of lower intensity peaks attrib-
(1) An examination of the literature has shown no mention of this type of bonding. The closest example we could find is the $\mathrm{C}_{8 \mathrm{v}}$ halfsandwich complex of a single planar cyclooctatetraene dianion with a central metal [M. A. Bennett, Advan. Organomet. Chem., 4, 376 (1966)]; the possible involvement of f orbitals in such complexes has, to our knowledge, not previously been discussed in the literature although the involvement of f orbitals has been proposed by W. Moffitt in the red compound, $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{UCl}[\mathrm{L} . \mathrm{T}$. Reynolds and G. Wilkinson, J. Inorg. Nucl. Chem., $2,246(1956)$]. A red compound, $\mathrm{Ti}\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)_{2}$, and yellow $\mathrm{Ti}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)_{3}$ have been reported [H. Breil and G. Wilke, Angew. Chem. Intern. Ed. Engl., 5, 898 (1966)]. The latter compound contains two planar eight-membered rings by X-ray determination [H. Dietrich and H. Dierks, ibid., 5, 899 (1966)] but both compounds are hydrolytically unstable and show the chemical behavior of highly ionic bonds to COT dianions.
(2) Repeat experiments have given yields up to 80% (G. Sonnichsen).
utable to the cations of $\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{6}$ (368), $\mathrm{U}+\mathrm{C}_{6} \mathrm{H}_{6}$ (316), U (238), $\mathrm{M} / 2$ (223), and $\mathrm{C}_{7} \mathrm{H}_{7}$ (91). This mass spectrum is completely consistent with an assigned sandwich-complex structure of the ferrocene type with planar eight-membered rings above and below a central uranium atom in a $\mathrm{D}_{8 \mathrm{~d}}$ or $\mathrm{D}_{8 \mathrm{~h}}$ arrangement.

Although we plan to discuss the bonding of uranocene in more detail on completion of current studies of chemical and physical (X-ray structure, magnetic susceptibility, etc.) properties, the kinds of bonds possible may be mentioned here for the $\mathrm{D}_{8 \mathrm{~h}}$ structure taken as an example. In this structure the 20π electrons of the two COT^{2-} rings can be shared with vacant uranium orbitals in the symmetry-permitted combinations: $\mathrm{A}_{1 \mathrm{~g}} \rightarrow 7 \mathrm{~s}\left(+\mathrm{d}_{2^{2}}\right.$ which is probably weak) ; $\mathrm{A}_{2 \mathrm{u}} \rightarrow 7 \mathrm{p}_{z}+5 \mathrm{f}_{7^{3}}$ (probably weak); $\mathrm{E}_{1 \mathrm{~g}} \rightarrow 6 \mathrm{~d}_{x 2}$, $6 \mathrm{~d}_{y 2} ; \mathrm{E}_{1 \mathrm{u}} \rightarrow 5 \mathrm{f}_{x z^{2}}+7 \mathrm{p}_{x}, 5 \mathrm{f}_{y z^{2}}+7 \mathrm{p}_{y} ; \mathrm{E}_{2 \mathrm{~g}} \rightarrow \mathrm{~d}_{x^{2}-y^{2}}$, $\mathrm{d}_{x y} ; \mathrm{E}_{2 u} \rightarrow \mathrm{f}_{x y 2}, \mathrm{f}_{2\left(x^{2}-y^{2}\right)} .{ }^{3,4}$ It is this last combination that provides the most unique bonding feature of the present structure. Finally, the two electrons originally associated with U^{i+} can be placed in the degenerate back-bonding combination, $\mathrm{E}_{3 \mathrm{u}} \leftarrow \mathrm{f}_{x\left(x^{2}-3 y^{2}\right)}, \mathrm{f}_{y\left(3 x^{2}-y^{2}\right)}$, and predicts a paramagnetic species. Similar combinations can be constructed for $\mathrm{D}_{8 \mathrm{~d}}$. These concepts imply that other ten-electron π systems should be potential ligands; such systems are currently being studied with several rare earth elements.

Acknowledgment. This research was supported in part by National Science Foundation Grant No. 6125.
(3) For the symbolism of f orbitals, cf. H. G. Friedman, Jr., G. R. Choppin, and D. G. Feuerbacher, J. Chem. Educ., 41, 354 (1964); C. Becker, ibid., 41, 358 (1964).
(4) We are indebted to Dr. G. Sonnichsen for assistance in constructing these combinations.

Andrew Streitwieser, Jr., Ulrich Müller-Westerhoff
Department of Chemistry, University of California Berkeley, California 94720
Received November 5, 1968

Direct Observation of Methyl-Substituted 7-Norbornadienyl and Bicyclo[3.2.0]heptadienyl Cations ${ }^{1}$

Sir:
An interesting facet of the chemistry of nonclassical carbonium ions deals with the rearrangements they can undergo. ${ }^{2 a}$ In this connection norbornadienyl cations have proved to be very instructive. ${ }^{2 b, c}$ Two mono-methyl-substituted norbornadienyl cations, the 7 methyl ion I and the 2 -methyl isomer II, and the rearrangement of I to II were reported recently. ${ }^{2 \mathrm{c}}$ We now report direct observation of the two remaining monomethylnorbornadienyl cations, the 1 -methyl species III and the 5-methyl isomer IV, as well as the rearrangement of III to IV. The new data elucidate further the quantitative relationships between the bicyclo[2.2.1]heptadienyl cations and their bicyclo[3.2.0] isomers. ${ }^{2 b}$

For the successful generation of the 1 - and 5-methyl7 -norbornadienyl cations III and IV we made use of the ring-expanding isomerization of the 2-methylbicyclo[3.2.0]heptadienyl cation VI to its bicyclo-

[^1]
[^0]: (12) The chelates show isotropic proton contact shifts alternating in sign in the aromatic ring.
 (13) To whom all correspondence should be addressed.

[^1]: (1) Research supported by the National Science Foundation.
 (2) (a) S. Winstein, Experientia Suppl., 137 (1955); L. de Vries and S. Winstein, J. Am. Chem. Soc., 82, 5363 (1960); (b) R. K. Lustgarten, M. Brookhart, and S. Winstein, ibid., 89, 6350 (1967); (c) M. Brookhart and R. K. Lustgarten, ibid., 89, 6352 (1967).

